PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Using three dimensional convolutional neural networks for denoising echosounder point cloud data

Text

Using three dimensional convolutional neural networks for denoising echosounder point cloud data

David Stephens - Nama Orang; Andrew Smith - Nama Orang; Thomas Redfern - Nama Orang; Andrew Talbot - Nama Orang; Andrew Lessnoff - Nama Orang; Kari Dempsey - Nama Orang;

It is estimated that over 80% of the world’s oceans are unexplored and unmapped limiting our understanding of ocean systems. Due to data collection rates of modern survey technologies such as swathe multibeam echosounders (MBES) and initiatives such as Seabed 2030, there is ever-increasing increasing volume of seafloor data collected. These large data volumes present significant challenges around quality assurance and validation with current approaches often requiring manual input. The aim of this study is to test the efficacy of applying novel 3D Convolutional Neural Network models to the problem of removing noise from MBES point cloud data, with a view to increasing the automation of processing bathymetric data. The results reported from hold-out test sets show promising performance with a classification accuracy of 97% and kappa scores of 0.94 on voxelized point cloud data. Deploying a sufficiently trained model in a productionized processing pipeline could be transformational, reducing the manual intervention required to take raw MBES point cloud data to a bathymetric data product.


Ketersediaan
89551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2020
Deskripsi Fisik
10 hlm PDF, 2.691 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.36
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, March 2020
Subjek
Deep learning
Point Cloud
3D convolutional neural network
Multibeam echosounder
Hydrographic survey
Bathymetry model
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Using three dimensional convolutional neural networks for denoising echosounder point cloud data
    It is estimated that over 80% of the world’s oceans are unexplored and unmapped limiting our understanding of ocean systems. Due to data collection rates of modern survey technologies such as swathe multibeam echosounders (MBES) and initiatives such as Seabed 2030, there is ever-increasing increasing volume of seafloor data collected. These large data volumes present significant challenges around quality assurance and validation with current approaches often requiring manual input. The aim of this study is to test the efficacy of applying novel 3D Convolutional Neural Network models to the problem of removing noise from MBES point cloud data, with a view to increasing the automation of processing bathymetric data. The results reported from hold-out test sets show promising performance with a classification accuracy of 97% and kappa scores of 0.94 on voxelized point cloud data. Deploying a sufficiently trained model in a productionized processing pipeline could be transformational, reducing the manual intervention required to take raw MBES point cloud data to a bathymetric data product.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik