PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Non-linear spectral unmixing of hyperspectral data using Modified PPNMM

Text

Non-linear spectral unmixing of hyperspectral data using Modified PPNMM

Ankur Dixit - Nama Orang; Shefali Agarwal - Nama Orang;

Spectral unmixing is one of the unique advantages of hyperspectral images to map the type of species. Such images contain a high spectral resolution making it a classical problem of signal processing at each pixel, which is supposedly formed by the interaction of variously constituted end-members (also known as mixed pixels). Finding the abundance of any feature (or class or end-member) may require these mixed pixels to be unmixed through mixing models. This study proposes a linear mixing model and a non-linear mixing model combined for spectral unmixing and suggests a modified mixing model. We proposed linearly unmixed abundances to be used as prior probabilities for non-linear mixing models. We have applied these methods to synthetic data to check performance and robustness. Synthetic data was created using the reflectance spectra of various end-members collected in the study region through rigorous field surveys. Abundance accuracy, reconstruction accuracy, and other statistical measures were used to assess overall accuracy, with results showing that Modified PPNMM performs better than PPNMM and LMM. The performance outcome is further validated with a satellite dataset (hyperspectral data of Hyperion) with randomly distributed points.


Ketersediaan
110551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2021
Deskripsi Fisik
12 hlm PDF, 2.675 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.9, March 2021
Subjek
Hyperspectral
Spectral unmixing
Non-linear unmixing
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Non-linear spectral unmixing of hyperspectral data using Modified PPNMM
    Spectral unmixing is one of the unique advantages of hyperspectral images to map the type of species. Such images contain a high spectral resolution making it a classical problem of signal processing at each pixel, which is supposedly formed by the interaction of variously constituted end-members (also known as mixed pixels). Finding the abundance of any feature (or class or end-member) may require these mixed pixels to be unmixed through mixing models. This study proposes a linear mixing model and a non-linear mixing model combined for spectral unmixing and suggests a modified mixing model. We proposed linearly unmixed abundances to be used as prior probabilities for non-linear mixing models. We have applied these methods to synthetic data to check performance and robustness. Synthetic data was created using the reflectance spectra of various end-members collected in the study region through rigorous field surveys. Abundance accuracy, reconstruction accuracy, and other statistical measures were used to assess overall accuracy, with results showing that Modified PPNMM performs better than PPNMM and LMM. The performance outcome is further validated with a satellite dataset (hyperspectral data of Hyperion) with randomly distributed points.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik