PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Efficiency of template matching methods for Multiple-Point Statistics simulations

Text

Efficiency of template matching methods for Multiple-Point Statistics simulations

Philippe Renard - Nama Orang; Mansoureh Sharifzadeh Lari - Nama Orang; Julien Straubhaar - Nama Orang;

Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise.
Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross-correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.


Ketersediaan
117551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2021
Deskripsi Fisik
19 hlm PDF, 21.652 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.11, September 2021
Subjek
Multiple-point statistics
Template matching
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Efficiency of template matching methods for Multiple-Point Statistics simulations
    Almost all Multiple-Point Statistic (MPS) methods use internally a template matching method to select patterns that best match conditioning data. The purpose of this paper is to analyze the performances of ten of the most frequently used template matching techniques in the framework of MPS algorithms. Performance is measured in terms of computing efficiency, accuracy, and memory usage. The methods were tested with both categorical and continuous training images (TI). The analysis considers the ability of those methods to locate rapidly and with minimum error a data event with a specific proportion of known pixels and a certain amount of noise. Experiments indicate that the Coarse to Fine using Entropy (CFE) method is the fastest in all configurations. Skipping methods are efficient as well. In terms of accuracy, and without noise all methods except CFE and cross-correlation (CC) perform well. CC is the least accurate in all configurations if the TI is not normalized. This method performs better when normalized training images are used. The Binary Sum of Absolute Difference is the most robust against noise. Finally, in terms of memory usage, CFE is the worst among the ten methods that were tested; the other methods are not significantly different.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik