PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A hybrid framework for modelling domains using quantitative covariates

Text

A hybrid framework for modelling domains using quantitative covariates

Yerniyaz Abildin - Nama Orang; Chaoshui Xu - Nama Orang; Peter Dowd - Nama Orang; Amir Adeli - Nama Orang;

Domains define the boundaries of mineralisation zones, within which the grade distribution of the target minerals can be quantified via an established mineral resource estimation procedure. Available domain modelling techniques include manual interpretation, implicit modelling and advanced geostatistical approaches. In mining applications, the most commonly used method is manual domaining, which is labour-intensive and prone to subjective judgement errors. In addition, the output is largely deterministic and ignores the significant uncertainty associated with the domain interpretation and boundary definitions. There is, therefore, a need for a more objective framework that can automatically define mineral domains and quantify the associated uncertainty. This paper describes such a framework, which consists of a hybrid approach based on simulated grade distributions and a machine learning (ML) classification technique, XGBoost, trained on lithological properties. Data from an Iron Oxide Copper Gold (IOCG) deposit are used as a case study to demonstrate the application of the proposed method. The study shows that the approach can handle complex multi-class problems with imbalanced features, and it can quantify the uncertainty of domain boundaries. A noise filtering method is used as a pre-processing step to improve the performance of the ML classification, especially in the case of problematic classes where domain boundaries are difficult to predict due to the similarity in geological characteristics.


Ketersediaan
134551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
21 hlm PDF, 26.736 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.16, December 2022
Subjek
Machine Learning
Noise filtering
Domain modelling for resource estimation
Geological uncertainty
Geostatistical simulation
Classification
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A hybrid framework for modelling domains using quantitative covariates
    Domains define the boundaries of mineralisation zones, within which the grade distribution of the target minerals can be quantified via an established mineral resource estimation procedure. Available domain modelling techniques include manual interpretation, implicit modelling and advanced geostatistical approaches. In mining applications, the most commonly used method is manual domaining, which is labour-intensive and prone to subjective judgement errors. In addition, the output is largely deterministic and ignores the significant uncertainty associated with the domain interpretation and boundary definitions. There is, therefore, a need for a more objective framework that can automatically define mineral domains and quantify the associated uncertainty. This paper describes such a framework, which consists of a hybrid approach based on simulated grade distributions and a machine learning (ML) classification technique, XGBoost, trained on lithological properties. Data from an Iron Oxide Copper Gold (IOCG) deposit are used as a case study to demonstrate the application of the proposed method. The study shows that the approach can handle complex multi-class problems with imbalanced features, and it can quantify the uncertainty of domain boundaries. A noise filtering method is used as a pre-processing step to improve the performance of the ML classification, especially in the case of problematic classes where domain boundaries are difficult to predict due to the similarity in geological characteristics.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik