PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization

Text

Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization

Solomon Asante-Okyere - Nama Orang; Chuanbo Shen - Nama Orang; Harrison Osei - Nama Orang;

Lithology identification is a fundamental activity in oil and gas exploration. The application of artificial intelligence (AI) is currently being adopted as a state-of-the-art means of automating lithology identification. One aspect of this AI approach is the application of population search algorithms to optimise hyperparameters for enhanced prediction performance. For the first time, Bayesian optimization is deployed to determine the optimal learning parameters for more accurate tree and tree ensemble lithology classifiers. The aim is to rely on the ability of Bayesian optimization to consider previous classification results to improve the output of decision and ensemble tree lithology models using well logs as inputs. The proposed Bayesian optimised decision tree (BODT) generated the best classification accuracy of 89.8% as compared to 86.9%, 83.3% and 81.2% for fine, medium and coarse trees. For the ensembled trees, the Bayesian optimised AdaBoost (BO-AdaBoost) classifier generated the highest improved prediction accuracy of 94.2% while Bayesian optimised Bagged (BO-Bagged) and Bayesian optimised RUSBoost (BO-RUSBoost) had a lower accuracy rate of 94.0% and 77.1% respectively. Additionally, the performance of the Bayesian optimised classifiers offered higher reliability when compared with particle swarm optimization-based artificial neural networks (PSO-ANN). Hence, incorporating Bayesian optimization as a hyperparameter search algorithm will improve litholofacies recognition, leading to a higher accuracy rate and thereby provide an improved alternative for intelligent lithology identification.


Ketersediaan
140551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2022
Deskripsi Fisik
7 hlm PDF, 4.869 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.16, December 2022
Subjek
Bayesian optimization
Decision tree
Lithology
AdaBoost
Bagged, RUSBoost
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Enhanced machine learning tree classifiers for lithology identification using Bayesian optimization
    Lithology identification is a fundamental activity in oil and gas exploration. The application of artificial intelligence (AI) is currently being adopted as a state-of-the-art means of automating lithology identification. One aspect of this AI approach is the application of population search algorithms to optimise hyperparameters for enhanced prediction performance. For the first time, Bayesian optimization is deployed to determine the optimal learning parameters for more accurate tree and tree ensemble lithology classifiers. The aim is to rely on the ability of Bayesian optimization to consider previous classification results to improve the output of decision and ensemble tree lithology models using well logs as inputs. The proposed Bayesian optimised decision tree (BODT) generated the best classification accuracy of 89.8% as compared to 86.9%, 83.3% and 81.2% for fine, medium and coarse trees. For the ensembled trees, the Bayesian optimised AdaBoost (BO-AdaBoost) classifier generated the highest improved prediction accuracy of 94.2% while Bayesian optimised Bagged (BO-Bagged) and Bayesian optimised RUSBoost (BO-RUSBoost) had a lower accuracy rate of 94.0% and 77.1% respectively. Additionally, the performance of the Bayesian optimised classifiers offered higher reliability when compared with particle swarm optimization-based artificial neural networks (PSO-ANN). Hence, incorporating Bayesian optimization as a hyperparameter search algorithm will improve litholofacies recognition, leading to a higher accuracy rate and thereby provide an improved alternative for intelligent lithology identification.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik