PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of 3D hydrostratigraphic and hydraulic conductivity modelling using supervised machine learning

Text

3D hydrostratigraphic and hydraulic conductivity modelling using supervised machine learning

Tewodros Tilahun - Nama Orang; Jesse Korus - Nama Orang;

Accurately modeling highly heterogenous aquifers is one of the big challenges in hydrogeology. There is a pressing need to develop new methods that transform high-resolution data into hydrogeological parameters representative of such aquifers. We use random forest-based machine learning to predict the distribution of hydrostratigraphic units and hydraulic conductivity (K) at a regional scale. We used lithologic logs from >2000 boreholes and resistivity-depth models from 2717 km of Airborne Electromagnetics (AEM). Eighty unique lithologic categories are lumped into 5 hydrostratigraphic units. K data is derived from descriptions of grain size and texture. The input data are resampled into a 200 × 200 × 1m grid and split into 70% training and 30% validation. K prediction had a training F1 score of 95% and 87% testing accuracy. After hyperparameter tuning these scores improved to 99.6% and 92%, respectively. Hydrostratigraphic unit prediction showed a training F1 score of 97% and 91% testing accuracy, improving to 100% and 95% after hyperparameter tuning. This method produces a high-resolution 3D model of K and hydrostratigraphic units that fills gaps between widely spaced boreholes. It is applicable in any setting where boreholes and AEM are available and can be used to build robust groundwater models for heterogeneous aquifers.


Ketersediaan
152551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
16 hlm PDF, 19.213 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.19, September 2023
Subjek
Machine Learning
3D hydrostratigraphy
Hydraulic conductivity modeling
Airborne electromagnetics
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • 3D hydrostratigraphic and hydraulic conductivity modelling using supervised machine learning
    Accurately modeling highly heterogenous aquifers is one of the big challenges in hydrogeology. There is a pressing need to develop new methods that transform high-resolution data into hydrogeological parameters representative of such aquifers. We use random forest-based machine learning to predict the distribution of hydrostratigraphic units and hydraulic conductivity (K) at a regional scale. We used lithologic logs from >2000 boreholes and resistivity-depth models from 2717 km of Airborne Electromagnetics (AEM). Eighty unique lithologic categories are lumped into 5 hydrostratigraphic units. K data is derived from descriptions of grain size and texture. The input data are resampled into a 200 × 200 × 1m grid and split into 70% training and 30% validation. K prediction had a training F1 score of 95% and 87% testing accuracy. After hyperparameter tuning these scores improved to 99.6% and 92%, respectively. Hydrostratigraphic unit prediction showed a training F1 score of 97% and 91% testing accuracy, improving to 100% and 95% after hyperparameter tuning. This method produces a high-resolution 3D model of K and hydrostratigraphic units that fills gaps between widely spaced boreholes. It is applicable in any setting where boreholes and AEM are available and can be used to build robust groundwater models for heterogeneous aquifers.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik