PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of A machine learning approach using legacy geophysical datasets to model Quaternary marine paleotopography

Text

A machine learning approach using legacy geophysical datasets to model Quaternary marine paleotopography

Jeffrey Obelcz - Nama Orang; Trilby Hill - Nama Orang; Davin J. Wallace - Nama Orang; Benjamin J. Phrampus - Nama Orang; Jordan H. Graw - Nama Orang;

High-resolution subsurface marine mapping tools, including chirp and 3D seismic, enable the reconstruction of ancient landscapes that have been buried and subsequently submerged by marine transgression. However, the established methods for paleotopographic reconstruction require time consuming field and data interpretation efforts. Here we present a novel methodology using machine learning to estimate Marine Isotope Stage 2 (MIS2) paleotopography over a large (22 000 km2) area of the Northern Gulf of Mexico with meter-scale accuracy (2.7 m mean prediction error, 4.3 m 1-σ mean uncertainty). A relatively small area (3300 km2) of high-resolution (30 × 30 m) interpreted paleotopography is used as training and validation data, while modern bathymetry and MIS2 paleovalley location (binary deep/shallow paleotopography) are used as predictors. This approach merges the high-resolution of modern mapping techniques and the broad coverage of low-resolution legacy geophysical data. Machine learning-modeled paleotopography is not a substitute for precise high-resolution paleotopography reconstruction techniques, but it can be used to reasonably approximate paleotopography over large areas with greatly reduced expense and expertise.


Ketersediaan
153551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
10 hlm PDF, 11.978 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.19, September 2023
Subjek
Machine Learning
Paleotopography
Marine isotope stage 2
Gulf of Mexico
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • A machine learning approach using legacy geophysical datasets to model Quaternary marine paleotopography
    High-resolution subsurface marine mapping tools, including chirp and 3D seismic, enable the reconstruction of ancient landscapes that have been buried and subsequently submerged by marine transgression. However, the established methods for paleotopographic reconstruction require time consuming field and data interpretation efforts. Here we present a novel methodology using machine learning to estimate Marine Isotope Stage 2 (MIS2) paleotopography over a large (22 000 km2) area of the Northern Gulf of Mexico with meter-scale accuracy (2.7 m mean prediction error, 4.3 m 1-σ mean uncertainty). A relatively small area (3300 km2) of high-resolution (30 × 30 m) interpreted paleotopography is used as training and validation data, while modern bathymetry and MIS2 paleovalley location (binary deep/shallow paleotopography) are used as predictors. This approach merges the high-resolution of modern mapping techniques and the broad coverage of low-resolution legacy geophysical data. Machine learning-modeled paleotopography is not a substitute for precise high-resolution paleotopography reconstruction techniques, but it can be used to reasonably approximate paleotopography over large areas with greatly reduced expense and expertise.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik