PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Python programs to apply regularized derivatives in the magnetic tilt
derivative and gradient intensity data processing: A graphical procedure to choose the regularization parameter

Text

Python programs to apply regularized derivatives in the magnetic tilt derivative and gradient intensity data processing: A graphical procedure to choose the regularization parameter

Janaína Anjos Melo - Nama Orang; Carlos Alberto Mendonça - Nama Orang; Yara Regina Marangoni - Nama Orang;

The Tikhonov regularization parameter is a key parameter controlling the smoothness degree and oscillations of a regularized unknown solution. Usual methods to determine a proper parameter (L-curve or the discrepancy principle, for example) are not readily applicable to the evaluation of regularized derivatives, since this formulation does not make explicit a set of model parameters that are necessary to implement these methods. We develop a procedure for the determination of the regularization parameter based on the graphical construction of a characteristic “staircase” function associated with the
-norm of the regularized derivatives for a set of trial regularization parameters. This function is independent of model parameters and presents a smooth and monotonic variation. The regularization parameters at the upper step (low values) of the ''staircase'' function provide equivalent results to the non-regularized derivative, the parameters at the lower step (high values) leading to over-smoothed derivatives. For the evaluated data sets, the proper regularization parameter is located in the slope connecting these two flat end-members of the staircase curve, thus balancing noise amplification against the amplitude loss in the transformed fields. A set of Python programs are presented to evaluate the regularization procedure in a well-known synthetic model composed of multiple (bulk and elongated) magnetic sources. This numerical approach also is applied in gridded aeromagnetic data covering high-grade metamorphic terrains of the Anápolis-Itauçu Complex in the Brasília Fold Belt central portion of Tocantins Province, central Brazil, characterized by multiple magnetic lineaments with different directions and intersections which are associated with shear zones, geologic faults, and intrusive bodies. The results obtained from the regularization procedure show efficiency in improving the maps of filtered fields, better tracking the continuity of magnetic lineaments and general geological trends. The results from the application in the Brasília Fold Belt enhance the importance and broader coverage of the Pirineus Zone of High Strain.


Ketersediaan
158551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2023
Deskripsi Fisik
10 hlm PDF, 10.063 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.19, September 2023
Subjek
Regularized derivative
Aeromagnetic data
Regularization parameter
Staircase function
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Python programs to apply regularized derivatives in the magnetic tilt derivative and gradient intensity data processing: A graphical procedure to choose the regularization parameter
    The Tikhonov regularization parameter is a key parameter controlling the smoothness degree and oscillations of a regularized unknown solution. Usual methods to determine a proper parameter (L-curve or the discrepancy principle, for example) are not readily applicable to the evaluation of regularized derivatives, since this formulation does not make explicit a set of model parameters that are necessary to implement these methods. We develop a procedure for the determination of the regularization parameter based on the graphical construction of a characteristic “staircase” function associated with the -norm of the regularized derivatives for a set of trial regularization parameters. This function is independent of model parameters and presents a smooth and monotonic variation. The regularization parameters at the upper step (low values) of the ''staircase'' function provide equivalent results to the non-regularized derivative, the parameters at the lower step (high values) leading to over-smoothed derivatives. For the evaluated data sets, the proper regularization parameter is located in the slope connecting these two flat end-members of the staircase curve, thus balancing noise amplification against the amplitude loss in the transformed fields. A set of Python programs are presented to evaluate the regularization procedure in a well-known synthetic model composed of multiple (bulk and elongated) magnetic sources. This numerical approach also is applied in gridded aeromagnetic data covering high-grade metamorphic terrains of the Anápolis-Itauçu Complex in the Brasília Fold Belt central portion of Tocantins Province, central Brazil, characterized by multiple magnetic lineaments with different directions and intersections which are associated with shear zones, geologic faults, and intrusive bodies. The results obtained from the regularization procedure show efficiency in improving the maps of filtered fields, better tracking the continuity of magnetic lineaments and general geological trends. The results from the application in the Brasília Fold Belt enhance the importance and broader coverage of the Pirineus Zone of High Strain.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik