PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation

Text

Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation

Suraj Neelakantan - Nama Orang; Jesper Norell - Nama Orang; Alexander Hansson - Nama Orang; Martin Längkvist - Nama Orang; Amy Loutfi - Nama Orang;

We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.


Ketersediaan
175551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
10 hlm PDF, 1.619 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.21, March 2024
Subjek
Semantic segmentation
Mineral identification
Unsupervised domain adaptation
Deep convolutional neural network
Euhedral pyrites
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Neural network approach for shape-based euhedral pyrite identification in X-ray CT data with adversarial unsupervised domain adaptation
    We explore an attenuation and shape-based identification of euhedral pyrites in high-resolution X-ray Computed Tomography (XCT) data using deep neural networks. To deal with the scarcity of annotated data we generate a complementary training set of synthetic images. To investigate and address the domain gap between the synthetic and XCT data, several deep learning models, with and without domain adaption, are trained and compared. We find that a model trained on a small set of human annotations, while displaying over-fitting, can rival the human annotators. The unsupervised domain adaptation approaches are successful in bridging the domain gap, which significantly improves their performance. A domain-adapted model, trained on a dataset that fuses synthetic and real data, is the overall best-performing model. This highlights the possibility of using synthetic datasets for the application of deep learning in mineralogy.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik