PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Machine learning technique in the north zagros earthquake prediction

Text

Machine learning technique in the north zagros earthquake prediction

Salma Ommi - Nama Orang; Mohammad Hashemi - Nama Orang;

Studying the changes in seismicity, and the potential of the occurrences of large earthquakes in a seismic zone is not only extremely important from the aspect of seismological research, but it is additionally significant in the decisions of crisis management. Since, nowadays Machine learning techniques have proven the high ability for analyzing information, and discovering the relations among the parameters, in this research were tested some of these techniques for the earthquake prediction. For analysis, the north Zagros seismic catalogue was selected. A region that is an active seismic zone, and large cities are located there. Moreover, nine seismic parameters were used to study the possibility of large earthquake prediction for 1 month using three different Machine Learning (ML) techniques (Artificial Neural Network (ANN), Random Forest, and Support Vector Machine (SVM)). The accuracy of prediction models was evaluated using four different statistical measures (recall, accuracy, precision, and F1-score). The results showed that the (ANN) method is more accurate than other methods. Based on three investigated methodologies, greater accuracy results have been produced to forecast the earthquakes with bigger scale earthquakes about the completeness of the seismic catalogue in large magnitude. These achievements promise the possibility of successful prediction in a short period, which is hopeful for better crisis management performance.


Ketersediaan
185551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
9 hlm PDF, 2.915 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.22, June 2024
Subjek
Machine Learning
Random forest
Earthquake prediction
Artificial neural networks
Support vector machine
Zagros
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Machine learning technique in the north zagros earthquake prediction
    Studying the changes in seismicity, and the potential of the occurrences of large earthquakes in a seismic zone is not only extremely important from the aspect of seismological research, but it is additionally significant in the decisions of crisis management. Since, nowadays Machine learning techniques have proven the high ability for analyzing information, and discovering the relations among the parameters, in this research were tested some of these techniques for the earthquake prediction. For analysis, the north Zagros seismic catalogue was selected. A region that is an active seismic zone, and large cities are located there. Moreover, nine seismic parameters were used to study the possibility of large earthquake prediction for 1 month using three different Machine Learning (ML) techniques (Artificial Neural Network (ANN), Random Forest, and Support Vector Machine (SVM)). The accuracy of prediction models was evaluated using four different statistical measures (recall, accuracy, precision, and F1-score). The results showed that the (ANN) method is more accurate than other methods. Based on three investigated methodologies, greater accuracy results have been produced to forecast the earthquakes with bigger scale earthquakes about the completeness of the seismic catalogue in large magnitude. These achievements promise the possibility of successful prediction in a short period, which is hopeful for better crisis management performance.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik