PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Interpretation techniques to explain the output of a spatial land subsidence hazard model in an area with a diverted tributary

Text

Interpretation techniques to explain the output of a spatial land subsidence hazard model in an area with a diverted tributary

Razieh Seihani - Nama Orang; Hamid Gholami - Nama Orang; Yahya Esmaeilpour - Nama Orang; Alireza Kamali - Nama Orang; Maryam Zareh - Nama Orang;

Due to the nature of black-box machine learning (ML) models used in the spatial modelling field of environmental and natural hazards, the interpretation of predictive model outputs is necessary. For this purpose, we applied four interpretation techniques consisting of interaction plot, permutation feature importance (PFI) measure, shapley additive explanation (SHAP) decision plot, and accumulated local effects (ALE) plot to explain and interpret the output of an ML model applied to map land subsidence (LS) in the Nazdasht plain, Hormozgan province, southern Iran. We applied a stepwise regression (SR) algorithm and five ML models (Cforest (as a conditional random forest), generalized linear model (GLM), multivariate linear regression (MLR), partial least squares (PLS) and extreme gradient boosting (XGBoost)) to select important features and to map the LS hazard, respectively. Thereafter, several interpretation techniques were used to explain the spatial ML hazard model output. Our findings revealed that a GLM model was the most accurate approach to map LS in our study area, and that 24.3% of the total study area had a very high susceptibility to the LS hazard. According to the interpretation techniques, land use, elevation, groundwater level and vegetation were the most important variables controlling the LS hazard and also the most important variables contributing to the model’s output. Overall, human activities, especially the diversion of the route of one of the main tributaries feeding the plain and the recharging of groundwater five decades ago, intensified the current LS occurrence. Therefore, management activities such as water spreading projects upstream of the plain can be useful to mitigate LS occurrence in the plain.


Ketersediaan
196551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
12 hlm PDF, 15.238 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.23, September 2024
Subjek
Spatial land subsidence map
Machine learning model
Black-box model
Interpretation techniques
River route deviation
Southern Iran
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Interpretation techniques to explain the output of a spatial land subsidence hazard model in an area with a diverted tributary
    Due to the nature of black-box machine learning (ML) models used in the spatial modelling field of environmental and natural hazards, the interpretation of predictive model outputs is necessary. For this purpose, we applied four interpretation techniques consisting of interaction plot, permutation feature importance (PFI) measure, shapley additive explanation (SHAP) decision plot, and accumulated local effects (ALE) plot to explain and interpret the output of an ML model applied to map land subsidence (LS) in the Nazdasht plain, Hormozgan province, southern Iran. We applied a stepwise regression (SR) algorithm and five ML models (Cforest (as a conditional random forest), generalized linear model (GLM), multivariate linear regression (MLR), partial least squares (PLS) and extreme gradient boosting (XGBoost)) to select important features and to map the LS hazard, respectively. Thereafter, several interpretation techniques were used to explain the spatial ML hazard model output. Our findings revealed that a GLM model was the most accurate approach to map LS in our study area, and that 24.3% of the total study area had a very high susceptibility to the LS hazard. According to the interpretation techniques, land use, elevation, groundwater level and vegetation were the most important variables controlling the LS hazard and also the most important variables contributing to the model’s output. Overall, human activities, especially the diversion of the route of one of the main tributaries feeding the plain and the recharging of groundwater five decades ago, intensified the current LS occurrence. Therefore, management activities such as water spreading projects upstream of the plain can be useful to mitigate LS occurrence in the plain.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik