PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of LSTM-based DEM generation in riverine environment

Text

LSTM-based DEM generation in riverine environment

Virag Lovasz - Nama Orang; Akos Halmai - Nama Orang;

In the broad field of sensors and 3D information retrieval, bathymetric reconstruction from side-scan sonar imaging is associated with unique technical hurdles. Neural Networks have recently led to promising new solutions in this field, but the available methods tend to be complex and data-intensive in a way typically making their use in a riverine environment impossible. Throughout our work, we have focused on simplifying the problem-handling and treating compatibility with a riverine environment as priority. In our work, Long Short-Term Memory proved to be effective in a surprisingly simple form. Combined with traditional post-processing techniques in the GIS environment, like median filtered focal statistics, our workflow ultimately results in ∼0.259 m median of error on the evaluation dataset of the Dráva River.


Ketersediaan
198551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
9 hlm PDF, 4.631 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.23, September 2024
Subjek
Long Short-Term Memory
Side-scan sonar
River bathymetry
Digital elevation models
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • LSTM-based DEM generation in riverine environment
    In the broad field of sensors and 3D information retrieval, bathymetric reconstruction from side-scan sonar imaging is associated with unique technical hurdles. Neural Networks have recently led to promising new solutions in this field, but the available methods tend to be complex and data-intensive in a way typically making their use in a riverine environment impossible. Throughout our work, we have focused on simplifying the problem-handling and treating compatibility with a riverine environment as priority. In our work, Long Short-Term Memory proved to be effective in a surprisingly simple form. Combined with traditional post-processing techniques in the GIS environment, like median filtered focal statistics, our workflow ultimately results in ∼0.259 m median of error on the evaluation dataset of the Dráva River.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik