PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of An UNet3+ Network based on global pyramid aggregation for change detection in optical remote-sensing images

Text

An UNet3+ Network based on global pyramid aggregation for change detection in optical remote-sensing images

Yanbo Sun - Nama Orang; Wenxing Bao - Nama Orang; Wei Feng - Nama Orang; Kewen Qu - Nama Orang; Xuan Maa - Nama Orang; Xiaowu Zhang - Nama Orang;

Change detection (CD) is a meaningful and challenging task for remote sensing (RS) image analysis. Deep learning (DL) based methods have shown great potential in change detection tasks, there are still two problems with existing deep learning methods such as CNN and Transformer: (1) They do not target different depths to extract global semantics in the network; (2) The increase in network depth will lead to uncertainty in the edge pixels of changing targets and the absence of small targets. First, to address this challenge and address these issues, this work proposes a global pyramid aggregation UNet3+ (GPA-UNet3+) change detection model, that uses UNet3+ as the backbone network and connects the encoder and decoder with a pyramid structure. Secondly, a Global Atrous Spatial Pooling Pyramid Module (GASPPM) is proposed. Refined features at different depths and aggregated them to enhance the network’s ability to extract global semantics. Finally, the Edge Enhancement Channel Attention Module (EECAM) is specifically proposed to alleviate the edge pixel uncertainty and spatial position information loss caused by the increase in network depth. Multiple experiments are conducted on two common change detection datasets and a real dataset. Extensive experimental results show that the proposed method outperforms other state-of-the-art methods, achieving the highest F1-score of 90.95%, 95.31%, and 88.32% on the LEVIR-CD dataset, SVCD dataset and Shizuishan Mining Area dataset, respectively.


Ketersediaan
212551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2024
Deskripsi Fisik
14 hlm PDF, 4.185 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.24, December 2024
Subjek
Convolutional neural networks
Remote sensing
Change detection
UNet3+
Global pyramid aggregation
Edge enhancement
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • An UNet3+ Network based on global pyramid aggregation for change detection in optical remote-sensing images
    Change detection (CD) is a meaningful and challenging task for remote sensing (RS) image analysis. Deep learning (DL) based methods have shown great potential in change detection tasks, there are still two problems with existing deep learning methods such as CNN and Transformer: (1) They do not target different depths to extract global semantics in the network; (2) The increase in network depth will lead to uncertainty in the edge pixels of changing targets and the absence of small targets. First, to address this challenge and address these issues, this work proposes a global pyramid aggregation UNet3+ (GPA-UNet3+) change detection model, that uses UNet3+ as the backbone network and connects the encoder and decoder with a pyramid structure. Secondly, a Global Atrous Spatial Pooling Pyramid Module (GASPPM) is proposed. Refined features at different depths and aggregated them to enhance the network’s ability to extract global semantics. Finally, the Edge Enhancement Channel Attention Module (EECAM) is specifically proposed to alleviate the edge pixel uncertainty and spatial position information loss caused by the increase in network depth. Multiple experiments are conducted on two common change detection datasets and a real dataset. Extensive experimental results show that the proposed method outperforms other state-of-the-art methods, achieving the highest F1-score of 90.95%, 95.31%, and 88.32% on the LEVIR-CD dataset, SVCD dataset and Shizuishan Mining Area dataset, respectively.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik