PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing

Text

Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing

Andre Dalla Bernardina Garcia - Nama Orang; MD Samiul Islam - Nama Orang; Victor Hugo Rohden Prudente - Nama Orang; Ieda Del’Arco Sanches - Nama Orang; Irene Cheng - Nama Orang;

Irrigated rice-field mapping methodologies have been rapidly evolving as a result of advanced remote sensing (RS) technology. However, current methods rely on extensive time-series data and a wide range of multi-spectral bands. These methods often struggle with classification accuracy with contaminated satellite data due to environmental factors or acquisition device constraints, e.g., cloud cover, shadows, noise, and the temporal and spectral resolution trade-off. Our goal is map irrigated rice-field by using a suitable satellite image band composition instead of time-series data. We divide the growth cycle into different rice phenological stages: beginning, middle and end of season, as well as the season transition periods. Near-infrared (NIR), short-wave infrared (SWIR) and red bands of MultiSpectral Instrument - MSI/Sentinel-2 (optical RS), along with polarizations of VV (vertical–vertical) and VH (vertical–horizontal) of Sentinel-1 C-band Synthetic Aperture Radar (SAR) (microwave RS), were used to create ten different false-color image composites. Ground truth maps from two consecutive growth seasons (2017/2018 and 2018/2019) served as references. We applied a modified version of the Fusion Adaptive Patch Network (FAPNET), named as Patch Layer Adaptive Network (PLANET) convolutional neural network (CNN) to obtain binary rice mapping, which was evaluated using the traditional Mean Intersection over Union (MIoU) and Dice coefficient. Analytic results show that the end of season is the most suitable for obtaining a reliable classification based on optical and SAR sensors. Although complex rice-field pose challenges, our predictions consistently scored a MIoU above 0.9. We conclude that choosing the right phenological stage for rice mapping combined with deep learning model can greatly improve the classification results. These results indicate that the choice of composition significantly impacts classification accuracy, especially in more complex environments.


Ketersediaan
234551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
14 hlm PDF, 4.026 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Deep learning
Multi-spectral band
False-color image composites
Rice phenological stages
Satellite images
Irrigated rice-field segmentation
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Irrigated rice-field mapping in Brazil using phenological stage information and optical and microwave remote sensing
    Irrigated rice-field mapping methodologies have been rapidly evolving as a result of advanced remote sensing (RS) technology. However, current methods rely on extensive time-series data and a wide range of multi-spectral bands. These methods often struggle with classification accuracy with contaminated satellite data due to environmental factors or acquisition device constraints, e.g., cloud cover, shadows, noise, and the temporal and spectral resolution trade-off. Our goal is map irrigated rice-field by using a suitable satellite image band composition instead of time-series data. We divide the growth cycle into different rice phenological stages: beginning, middle and end of season, as well as the season transition periods. Near-infrared (NIR), short-wave infrared (SWIR) and red bands of MultiSpectral Instrument - MSI/Sentinel-2 (optical RS), along with polarizations of VV (vertical–vertical) and VH (vertical–horizontal) of Sentinel-1 C-band Synthetic Aperture Radar (SAR) (microwave RS), were used to create ten different false-color image composites. Ground truth maps from two consecutive growth seasons (2017/2018 and 2018/2019) served as references. We applied a modified version of the Fusion Adaptive Patch Network (FAPNET), named as Patch Layer Adaptive Network (PLANET) convolutional neural network (CNN) to obtain binary rice mapping, which was evaluated using the traditional Mean Intersection over Union (MIoU) and Dice coefficient. Analytic results show that the end of season is the most suitable for obtaining a reliable classification based on optical and SAR sensors. Although complex rice-field pose challenges, our predictions consistently scored a MIoU above 0.9. We conclude that choosing the right phenological stage for rice mapping combined with deep learning model can greatly improve the classification results. These results indicate that the choice of composition significantly impacts classification accuracy, especially in more complex environments.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik