PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of lasertram: A Python library for time resolved analysis of laser ablation inductively coupled plasma mass spectrometry data

Text

lasertram: A Python library for time resolved analysis of laser ablation inductively coupled plasma mass spectrometry data

Jordan Lubbers - Nama Orang; Adam J.R. Kent - Nama Orang; Chris Russo - Nama Orang;

Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data has a wide variety of uses in the geosciences for in-situ chemical analysis of complex natural materials. Improvements to instrument capabilities and operating software have drastically reduced the time required to generate large volumes of data relative to previous methodologies. Raw data from LA-ICP-MS, however, is in counts per unit time (typically counts per second), not elemental concentrations and converting these count ratesto concentrations requires additional processing. For complex materials where the ablated volume may contain a range of material compositions, a moderate amount of user input is also required if appropriate concentrations are to be accurately calculated. In geologic materials such as glasses and minerals that potentially have numerous heterogeneities (e.g., microlites or other inclusions) within them, this is typically determiningwhether the total ablation signal should be filtered to remove these heterogeneities. This necessitates that the LA-ICP-MS data processing pipeline is one that is not automated, but is also designed to enable rapid and efficient processing of large volumes of data.
Here we introduce , a Python library for the time resolved analysis of LA-ICP-MS data. We outline its mathematical theory, code structure, and provide an example of how it can be used to provide the time resolved analysis necessitated by LA-ICP-MS data of complex geologic materials. Throughout the pipeline we show how metadata and data are incrementally added to the objects created such that virtually any aspect of an experiment may be interrogated and its quality assessed. We also show, that when combined with other Python libraries for building graphical user interfaces, it can be utilized outside of a pure scripting environment.


Ketersediaan
236551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
16 hlm PDF, 4.486 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Geochemistry
LA-ICP-MS
Python
Trace elements
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • lasertram: A Python library for time resolved analysis of laser ablation inductively coupled plasma mass spectrometry data
    Laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) data has a wide variety of uses in the geosciences for in-situ chemical analysis of complex natural materials. Improvements to instrument capabilities and operating software have drastically reduced the time required to generate large volumes of data relative to previous methodologies. Raw data from LA-ICP-MS, however, is in counts per unit time (typically counts per second), not elemental concentrations and converting these count ratesto concentrations requires additional processing. For complex materials where the ablated volume may contain a range of material compositions, a moderate amount of user input is also required if appropriate concentrations are to be accurately calculated. In geologic materials such as glasses and minerals that potentially have numerous heterogeneities (e.g., microlites or other inclusions) within them, this is typically determiningwhether the total ablation signal should be filtered to remove these heterogeneities. This necessitates that the LA-ICP-MS data processing pipeline is one that is not automated, but is also designed to enable rapid and efficient processing of large volumes of data. Here we introduce , a Python library for the time resolved analysis of LA-ICP-MS data. We outline its mathematical theory, code structure, and provide an example of how it can be used to provide the time resolved analysis necessitated by LA-ICP-MS data of complex geologic materials. Throughout the pipeline we show how metadata and data are incrementally added to the objects created such that virtually any aspect of an experiment may be interrogated and its quality assessed. We also show, that when combined with other Python libraries for building graphical user interfaces, it can be utilized outside of a pure scripting environment.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik