PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Relationships between fault friction, slip time, and physical parameters explored by experiment-based friction model: A machine learning approach using recurrent neural networks (RNNs)

Text

Relationships between fault friction, slip time, and physical parameters explored by experiment-based friction model: A machine learning approach using recurrent neural networks (RNNs)

Tae-Hoon Uhmb - Nama Orang; Yohei Hamada - Nama Orang; Takehiro Hirose - Nama Orang;

Understanding the relationship between fault friction and physical parameters is crucial for comprehending earthquake physics. Despite various friction models developed to explain this relationship, representing the relationships in a friction model with greater detail remains a challenge due to intricate correlations, including the nonlinear interplay between physical parameters and friction. Here we develop new models to define the relationship between various physical parameters (slip velocity, axial displacement, temperature, rate of temperature, and rate of axial displacement), friction coefficient, and slip time. The models are established by utilizing Recurrent Neural Networks (RNNs) to analyze continuous data in high-velocity rotary shear experiments (HVR), as reported by previous work. The experiment has been conducted on diorite specimens at a slip velocity (0.004 m/s) in various normal stress (0.3–5.8 MPa). At this conditions, frictional heating occurs inevitably at the sliding surface, reaching temperature up to 68 °C. We first identified the optimal model by assessing its accuracy in relation to the time interval for defining friction. Following this, we explored the relationship between friction and physical parameters with varying slip time and conditions by analyzing the gradient importance of physical parameters within the identified model. Our results demonstrate that the importance of physical parameters continuously shifts over slip time and conditions, and temperature stands out as the most influential parameter affecting fault friction under slip conditions of this study accompanied by frictional heating. Our study demonstrates the potential of deep learning analysis in enhancing our understanding of complex frictional processes, contributing to the development of more refined friction models and improving predictive models for earthquake physics.


Ketersediaan
240551.136Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Penerbit
Amsterdam : Elsevier., 2025
Deskripsi Fisik
14 hlm PDF, 9.549 KB
Bahasa
Inggris
ISBN/ISSN
2590-1974
Klasifikasi
551.136
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.25, February 2025
Subjek
Machine Learning
Friction
High-velocity rotary shear experiments
Recurrent neural networks
Gradient importance
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Relationships between fault friction, slip time, and physical parameters explored by experiment-based friction model: A machine learning approach using recurrent neural networks (RNNs)
    Understanding the relationship between fault friction and physical parameters is crucial for comprehending earthquake physics. Despite various friction models developed to explain this relationship, representing the relationships in a friction model with greater detail remains a challenge due to intricate correlations, including the nonlinear interplay between physical parameters and friction. Here we develop new models to define the relationship between various physical parameters (slip velocity, axial displacement, temperature, rate of temperature, and rate of axial displacement), friction coefficient, and slip time. The models are established by utilizing Recurrent Neural Networks (RNNs) to analyze continuous data in high-velocity rotary shear experiments (HVR), as reported by previous work. The experiment has been conducted on diorite specimens at a slip velocity (0.004 m/s) in various normal stress (0.3–5.8 MPa). At this conditions, frictional heating occurs inevitably at the sliding surface, reaching temperature up to 68 °C. We first identified the optimal model by assessing its accuracy in relation to the time interval for defining friction. Following this, we explored the relationship between friction and physical parameters with varying slip time and conditions by analyzing the gradient importance of physical parameters within the identified model. Our results demonstrate that the importance of physical parameters continuously shifts over slip time and conditions, and temperature stands out as the most influential parameter affecting fault friction under slip conditions of this study accompanied by frictional heating. Our study demonstrates the potential of deep learning analysis in enhancing our understanding of complex frictional processes, contributing to the development of more refined friction models and improving predictive models for earthquake physics.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik