PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index

Text

Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index

Yaqi Sun - Nama Orang; Hailong Liu - Nama Orang; Zhengqiang Guo - Nama Orang;

The degradation and desertification of grasslands pose a daunting challenge to China's arid and semiarid areas owing to the increasing demand for them in light of the rise of animal husbandry. Monitoring grasslands by using big data has emerged as a popular area of research in recent years. As grassland degradation is a slow and gradual process, the accurate identification of grassland cover is key to monitoring it. Vegetation coverage is currently monitored mainly by combining inversion-based methods with field surveys, which requires significant human effort and other resources and is thus unsuitable for use at a large scale. We proposed to use time series from the enhanced vegetation index (EVI) in capsule network-based methods to identify grasslands. The process classified grassland coverage into four levels, high, medium, low, and other, based on Landsat images from 2019. The accuracy in classifying the grasslands at each level was higher than 90%, with an overall accuracy of 96.32% and a kappa coefficient of 0.9508. The proposed method outperformed the SVM, RF, and LSTM algorithms in terms of classification accuracy.


Ketersediaan
253551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2021
Deskripsi Fisik
9 hlm PDF, 3,657 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.2, December 2021
Subjek
Deep learning
Remote sensing
Classification
Grassland coverage
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Capsule network-based approach for estimating grassland coverage using time series data from enhanced vegetation index
    The degradation and desertification of grasslands pose a daunting challenge to China's arid and semiarid areas owing to the increasing demand for them in light of the rise of animal husbandry. Monitoring grasslands by using big data has emerged as a popular area of research in recent years. As grassland degradation is a slow and gradual process, the accurate identification of grassland cover is key to monitoring it. Vegetation coverage is currently monitored mainly by combining inversion-based methods with field surveys, which requires significant human effort and other resources and is thus unsuitable for use at a large scale. We proposed to use time series from the enhanced vegetation index (EVI) in capsule network-based methods to identify grasslands. The process classified grassland coverage into four levels, high, medium, low, and other, based on Landsat images from 2019. The accuracy in classifying the grasslands at each level was higher than 90%, with an overall accuracy of 96.32% and a kappa coefficient of 0.9508. The proposed method outperformed the SVM, RF, and LSTM algorithms in terms of classification accuracy.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik