PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Machine learning in petrophysics: Advantages and limitations
Penanda Bagikan

Text

Machine learning in petrophysics: Advantages and limitations

Chicheng Xu - Nama Orang; Lei Fu - Nama Orang; Tao Lin - Nama Orang; Weichang Li - Nama Orang; Shouxiang Ma - Nama Orang;

Machine learning provides a powerful alternative data-driven approach to accomplish many petrophysical tasks from subsurface data. It can assimilate information from large and rich data bases and infer relations, rules, and knowledge hidden in the data. When the physics behind data becomes extremely complex, inexplicit, or even unclear/unknown, machine learning approaches have the advantage of being more flexible with wider applicability over conventional physics-based interpretation models. Moreover, machine learning can be utilized to assist many labor-intensive human interpretation tasks such as bad data identification, facies classification, and geo-features segmentation out of imagery data.
However, the validity of the outcome from machine learning largely depends on the quantity, quality, representativeness, and relevance of the feeding data including accurate labels. To achieve the best performance, it requires significant effort in data preparation, feature engineering, algorithm selection, architecture design hyperparameter tuning, and regularization. In addition, it needs to overcome technical issues such as imbalanced population, overfitting, and underfitting.
In this paper, advantages, limitations, and conditions of using machine learning to solve petrophysics challenges are discussed. The capability of machine learning algorithms in accomplishing different challenging tasks can only be achieved by overcoming its own limitations. Machine learning, if properly utilized, can become a powerful disruptive tool for assisting a series of critical petrophysics tasks.


Ketersediaan
#
Perpustakaan BIG (Eksternal Harddisk) 551
285
Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2022
Deskripsi Fisik
5 hlm PDF, 3.624 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.3, December 2022
Subjek
-
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Machine learning in petrophysics: Advantages and limitations
    Machine learning provides a powerful alternative data-driven approach to accomplish many petrophysical tasks from subsurface data. It can assimilate information from large and rich data bases and infer relations, rules, and knowledge hidden in the data. When the physics behind data becomes extremely complex, inexplicit, or even unclear/unknown, machine learning approaches have the advantage of being more flexible with wider applicability over conventional physics-based interpretation models. Moreover, machine learning can be utilized to assist many labor-intensive human interpretation tasks such as bad data identification, facies classification, and geo-features segmentation out of imagery data. However, the validity of the outcome from machine learning largely depends on the quantity, quality, representativeness, and relevance of the feeding data including accurate labels. To achieve the best performance, it requires significant effort in data preparation, feature engineering, algorithm selection, architecture design hyperparameter tuning, and regularization. In addition, it needs to overcome technical issues such as imbalanced population, overfitting, and underfitting. In this paper, advantages, limitations, and conditions of using machine learning to solve petrophysics challenges are discussed. The capability of machine learning algorithms in accomplishing different challenging tasks can only be achieved by overcoming its own limitations. Machine learning, if properly utilized, can become a powerful disruptive tool for assisting a series of critical petrophysics tasks.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial adalah perpustakaan yang dikelola oleh Badan Informasi Geospasial. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial dan literatur terkait lainnya.

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik