PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms

Text

PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms

Megha Chakraborty - Nama Orang; Wei Li - Nama Orang; Johannes Faber - Nama Orang; Georg Rümpker - Nama Orang; Nishtha Srivastava - Nama Orang; Claudia Quinteros Cartaya - Nama Orang; Horst Stoecker - Nama Orang;

The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.


Ketersediaan
289551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2022
Deskripsi Fisik
7 hlm PDF, 6.055 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.3, December 2022
Subjek
First-motion polarity
Earthquake waveforms
Convolutional
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • PolarCAP – A deep learning approach for first motion polarity classification of earthquake waveforms
    The polarity of first P-wave arrivals plays a significant role in the effective determination of focal mechanisms specially for smaller earthquakes. Manual estimation of polarities is not only time-consuming but also prone to human errors. This warrants a need for an automated algorithm for first motion polarity determination. We present a deep learning model - PolarCAP that uses an autoencoder architecture to identify first-motion polarities of earth-quake waveforms. PolarCAP is trained in a supervised fashion using more than 130,000 labelled traces from the Italian seismic dataset (INSTANCE) and is cross-validated on 22,000 traces to choose the most optimal set of hyperparameters. We obtain an accuracy of 0.98 on a completely unseen test dataset of almost 33,000 traces. Furthermore, we check the model generalizability by testing it on the datasets provided by previous works and show that our model achieves a higher recall on both positive and negative polarities.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik