PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Synthetic shear sonic log generation utilizing hybrid machine learning techniques

Text

Synthetic shear sonic log generation utilizing hybrid machine learning techniques

Jongkook Kim - Nama Orang;

Compressional and shear sonic logs (DTC and DTS, respectively) are one of the effective means for determining petrophysical/geomechanical properties. However, the DTS log has limited availability mainly due to high acquisition costs. This study introduces a hybrid machine learning approach to generating synthetic DTS logs. Five wireline logs such as gamma ray (GR), density (RHOB), neutron porosity (NPHI), deep resistivity (Rt), and DTS logs are used as input data for three supervised-machine learning models including support vector machine for regression (SVR), deep neural network (DNN), and long short-term memory (LSTM). The hybrid machine learning model utilizes two additional techniques. First, as an unsupervised-learning approach, data clustering is integrated with general machine learning models for the purpose of improving model accuracy. All the machine learning models using the data-clustered approach show higher accuracies in predicting target (DTS) values, compared to non-clustered models. Second, particle swarm optimization (PSO) is combined with the models to determine optimal hyperparameters. The PSO algorithm proves time-effective, automated advantages as it gets feedback from previous computations so that is able to narrow down candidates for optimal hyperparameters. Compared to previous studies focusing on the performance comparison among machine learning algorithms, this study introduces an advanced approach to further improve the performance by integrating the unsupervised learning technique and PSO optimization with the general models. Based on this study result, we recommend the hybrid machine learning approach for improving the reliability and efficiency of synthetic log generation.


Ketersediaan
291551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2022
Deskripsi Fisik
18 hlm PDF, 19.380 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.3, December 2022
Subjek
Synthetic log
Data clustering
Particle swarm optimization (PSO)
Support vector machine (SVM)
Deep neural network (DNN)
Long short-term memory (LSTM)
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Synthetic shear sonic log generation utilizing hybrid machine learning techniques
    Compressional and shear sonic logs (DTC and DTS, respectively) are one of the effective means for determining petrophysical/geomechanical properties. However, the DTS log has limited availability mainly due to high acquisition costs. This study introduces a hybrid machine learning approach to generating synthetic DTS logs. Five wireline logs such as gamma ray (GR), density (RHOB), neutron porosity (NPHI), deep resistivity (Rt), and DTS logs are used as input data for three supervised-machine learning models including support vector machine for regression (SVR), deep neural network (DNN), and long short-term memory (LSTM). The hybrid machine learning model utilizes two additional techniques. First, as an unsupervised-learning approach, data clustering is integrated with general machine learning models for the purpose of improving model accuracy. All the machine learning models using the data-clustered approach show higher accuracies in predicting target (DTS) values, compared to non-clustered models. Second, particle swarm optimization (PSO) is combined with the models to determine optimal hyperparameters. The PSO algorithm proves time-effective, automated advantages as it gets feedback from previous computations so that is able to narrow down candidates for optimal hyperparameters. Compared to previous studies focusing on the performance comparison among machine learning algorithms, this study introduces an advanced approach to further improve the performance by integrating the unsupervised learning technique and PSO optimization with the general models. Based on this study result, we recommend the hybrid machine learning approach for improving the reliability and efficiency of synthetic log generation.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik