PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Blockly earthquake transformer: A deep learning platform for custom phase picking

Text

Blockly earthquake transformer: A deep learning platform for custom phase picking

Hao Mai - Nama Orang; Pascal Audet - Nama Orang; H.K. Claire Perry - Nama Orang; S. Mostafa Mousavi - Nama Orang; Quan Zhang - Nama Orang;

Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substantial effort is required to improve the performance by either developing a new model or fine-tuning an existing one. To address this challenge, we present Blockly Earthquake Transformer(BET), a deep-learning platform for efficient customization of deep-learning phase pickers. BET implements Earthquake Transformer as its baseline model, and offers transfer learning and fine-tuning extensions. BET provides an interactive dashboard to customize a model based on a particular dataset. Once the parameters are specified, BET executes the corresponding phase-picking task without direct user interaction with the base code. Within the transfer-learning module, BET extends the application of a deep-learning P and S phase picker to more specific phases (e.g., Pn, Pg, Sn and Sg phases). In the fine-tuning module, the model performance is enhanced by customizing the model architecture. This no-code platform is designed to quickly deploy reusable workflows, build customized models, visualize training processes, and produce publishable figures in a lightweight, interactive, and open-source Python toolbox.


Ketersediaan
295551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2023
Deskripsi Fisik
11 hlm PDF, 3.595 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.4, December 2023
Subjek
Deep learning
Seismology
Earthquake detection
Seismic phase identification
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Blockly earthquake transformer: A deep learning platform for custom phase picking
    Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substantial effort is required to improve the performance by either developing a new model or fine-tuning an existing one. To address this challenge, we present Blockly Earthquake Transformer(BET), a deep-learning platform for efficient customization of deep-learning phase pickers. BET implements Earthquake Transformer as its baseline model, and offers transfer learning and fine-tuning extensions. BET provides an interactive dashboard to customize a model based on a particular dataset. Once the parameters are specified, BET executes the corresponding phase-picking task without direct user interaction with the base code. Within the transfer-learning module, BET extends the application of a deep-learning P and S phase picker to more specific phases (e.g., Pn, Pg, Sn and Sg phases). In the fine-tuning module, the model performance is enhanced by customizing the model architecture. This no-code platform is designed to quickly deploy reusable workflows, build customized models, visualize training processes, and produce publishable figures in a lightweight, interactive, and open-source Python toolbox.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik