PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Estimating relative diffusion from 3D micro-CT images using CNNs

Text

Estimating relative diffusion from 3D micro-CT images using CNNs

Stephan Gärttner - Nama Orang; Florian Frank - Nama Orang; Fabian Woller - Nama Orang; Andreas Meier - Nama Orang; Nadja Ray - Nama Orang;

In recent years, convolutional neural networks (CNNs) have demonstrated their effectiveness in predicting bulk parameters, such as effective diffusion, directly from pore-space geometries. CNNs offer significant computational advantages over traditional methods, making them particularly appealing. However, the current literature primarily focuses on fully saturated porous media, while the partially saturated case is also of high interest for various applications. Partially saturated conditions present more complex geometries for diffusive transport, making the prediction task more challenging. Traditional CNNs tend to lose robustness and accuracy with lower saturation rates. In this paper, we overcome this limitation by introducing a CNN, which conveniently fuses diffusion prediction and a well-established morphological model that describes phase distributions in partially saturated porous media. We demonstrate the ability of our CNN to perform accurate predictions of relative diffusion directly from full pore-space geometries. Finally, we compare our predictions with well-established relations such as the one by Millington–Quirk.


Ketersediaan
300551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2023
Deskripsi Fisik
10 hlm PDF, 2.839 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.4, December 2023
Subjek
Deep learning
Neural networks
Digital rock
Relative diffusion
Partial saturation
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Estimating relative diffusion from 3D micro-CT images using CNNs
    In recent years, convolutional neural networks (CNNs) have demonstrated their effectiveness in predicting bulk parameters, such as effective diffusion, directly from pore-space geometries. CNNs offer significant computational advantages over traditional methods, making them particularly appealing. However, the current literature primarily focuses on fully saturated porous media, while the partially saturated case is also of high interest for various applications. Partially saturated conditions present more complex geometries for diffusive transport, making the prediction task more challenging. Traditional CNNs tend to lose robustness and accuracy with lower saturation rates. In this paper, we overcome this limitation by introducing a CNN, which conveniently fuses diffusion prediction and a well-established morphological model that describes phase distributions in partially saturated porous media. We demonstrate the ability of our CNN to perform accurate predictions of relative diffusion directly from full pore-space geometries. Finally, we compare our predictions with well-established relations such as the one by Millington–Quirk.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik