PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows

Text

Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows

Guruh Samodra - Nama Orang; Ngadisih - Nama Orang; Ferman Setia Nugroho - Nama Orang;

Machine learning (ML) algorithms are frequently used in landslide susceptibility modeling. Different data handling strategies may generate variations in landslide susceptibility modeling, even when using the same ML algorithm. This research aims to compare the combinations of inventory data handling, cross validation (CV), and hyperparameter tuning strategies to generate landslide susceptibility maps. The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques. The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point, i.e., the landslide point is located on the toe (minimum height), on the scarp (maximum height), at the center of the landslide, randomly inside the polygon (1 point), randomly inside the polygon (3 points), randomly inside the polygon (5 points), randomly inside the polygon (10 points), and 15 m grid sampling. Random forest models using CV–nonspatial hyperparameter tuning, spatial CV–spatial hyperparameter tuning, and spatial CV–forward feature selection–no hyperparameter tuning were applied for each data handling strategy. The combination generated 24 random forest ML workflows, which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka (2017) in Pacitan Regency, Indonesia, and 11 landslide controlling factors. The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting, generate a relatively high-performance predictive model, and reduce the appearance of susceptibility artifacts in the landslide area. Careful data inventory handling, CV, and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.


Ketersediaan
316551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
16 hlm PDF, 33.426 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Machine Learning
Random forest
Spatial cross validation
Landslide
Sampling strategies
Hyperparameter tuning
Susceptibility
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Benchmarking data handling strategies for landslide susceptibility modeling using random forest workflows
    Machine learning (ML) algorithms are frequently used in landslide susceptibility modeling. Different data handling strategies may generate variations in landslide susceptibility modeling, even when using the same ML algorithm. This research aims to compare the combinations of inventory data handling, cross validation (CV), and hyperparameter tuning strategies to generate landslide susceptibility maps. The results are expected to provide a general strategy for landslide susceptibility modeling using ML techniques. The authors employed eight landslide inventory data handling scenarios to convert a landslide polygon into a landslide point, i.e., the landslide point is located on the toe (minimum height), on the scarp (maximum height), at the center of the landslide, randomly inside the polygon (1 point), randomly inside the polygon (3 points), randomly inside the polygon (5 points), randomly inside the polygon (10 points), and 15 m grid sampling. Random forest models using CV–nonspatial hyperparameter tuning, spatial CV–spatial hyperparameter tuning, and spatial CV–forward feature selection–no hyperparameter tuning were applied for each data handling strategy. The combination generated 24 random forest ML workflows, which are applied using a complete inventory of 743 landslides triggered by Tropical Cyclone Cempaka (2017) in Pacitan Regency, Indonesia, and 11 landslide controlling factors. The results show that grid sampling with spatial CV and spatial hyperparameter tuning is favorable because the strategy can minimize overfitting, generate a relatively high-performance predictive model, and reduce the appearance of susceptibility artifacts in the landslide area. Careful data inventory handling, CV, and hyperparameter tuning strategies should be considered in landslide susceptibility modeling to increase the applicability of landslide susceptibility maps in practical application.
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik