PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu
Image of Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield

Text

Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield

Cai Li - Nama Orang; Fei Ma - Nama Orang; Yuxiu Wang - Nama Orang; Delong Zhang - Nama Orang;

The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield. Conventional connectivity studies often use methods such as seismic attribute fusion, while the development of contiguous composite sandbodies in this area makes it challenging to characterize connectivity changes with conventional seismic attributes. Aiming at the above problem in the Bohai A Oilfield, this study proposes a big data analysis method based on the Deep Forest algorithm to predict the sandbody connectivity. Firstly, by compiling the abundant exploration and development sandbodies data in the study area, typical sandbodies with reliable connectivity were selected. Then, sensitive seismic attribute were extracted to obtain training samples. Finally, based on the Deep Forest algorithm, mapping model between attribute combinations and sandbody connectivity was established through machine learning. This method achieves the first quantitative determination of the connectivity for continuous composite sandbodies in the Bohai Oilfield. Compared with conventional connectivity discrimination methods such as high-resolution processing and seismic attribute analysis, this method can combine the sandbody characteristics of the study area in the process of machine learning, and jointly judge connectivity by combining multiple seismic attributes. The study results show that this method has high accuracy and timeliness in predicting connectivity for continuous composite sandbodies. Applied to the Bohai A Oilfield, it successfully identified multiple sandbody connectivity relationships and provided strong support for the subsequent exploration potential assessment and well placement optimization. This method also provides a new idea and method for studying sandbody connectivity under similar complex geological conditions.


Ketersediaan
328551Perpustakaan BIG (Eksternal Harddisk)Tersedia
Informasi Detail
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Penerbit
Beijing : KeAi Communications Co. Ltd.., 2024
Deskripsi Fisik
8 hlm PDF, 6.809 KB
Bahasa
Inggris
ISBN/ISSN
2666-5441
Klasifikasi
551
Tipe Isi
text
Tipe Media
-
Tipe Pembawa
-
Edisi
Vol.5, December 2024
Subjek
Machine Learning
Continuous sandbody
Connectivity prediction
Big data analysis
Deep forest
Info Detail Spesifik
-
Pernyataan Tanggungjawab
-
Versi lain/terkait

Tidak tersedia versi lain

Lampiran Berkas
  • Research on the prediction method for fluvial-phase sandbody connectivity based on big data analysis--a case study of Bohai a oilfield
    The connectivity of sandbodies is a key constraint to the exploration effectiveness of Bohai A Oilfield. Conventional connectivity studies often use methods such as seismic attribute fusion, while the development of contiguous composite sandbodies in this area makes it challenging to characterize connectivity changes with conventional seismic attributes. Aiming at the above problem in the Bohai A Oilfield, this study proposes a big data analysis method based on the Deep Forest algorithm to predict the sandbody connectivity. Firstly, by compiling the abundant exploration and development sandbodies data in the study area, typical sandbodies with reliable connectivity were selected. Then, sensitive seismic attribute were extracted to obtain training samples. Finally, based on the Deep Forest algorithm, mapping model between attribute combinations and sandbody connectivity was established through machine learning. This method achieves the first quantitative determination of the connectivity for continuous composite sandbodies in the Bohai Oilfield. Compared with conventional connectivity discrimination methods such as high-resolution processing and seismic attribute analysis, this method can combine the sandbody characteristics of the study area in the process of machine learning, and jointly judge connectivity by combining multiple seismic attributes. The study results show that this method has high accuracy and timeliness in predicting connectivity for continuous composite sandbodies. Applied to the Bohai A Oilfield, it successfully identified multiple sandbody connectivity relationships and provided strong support for the subsequent exploration potential assessment and well placement optimization. This method also provides a new idea and method for studying sandbody connectivity under similar complex geological conditions.
    Other Resource Link
Komentar

Anda harus masuk sebelum memberikan komentar

PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial (BIG) adalah sebuah perpustakaan yang berada di bawah Badan Informasi Geospasial Indonesia. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial, termasuk peta, data geospasial, dan literatur terkait. Selengkapnya

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik