Alteration minerals and silicification are typically associated with a variety of ore mineralizations and could be detected using multispectral remote sensing sensors as indicators for mineral exploration. In this investigation, the Visible Near-Infra-Red (VNIR), Short-Wave Infra-Red (SWIR), and Thermal Infra-Red (TIR) bands of the ASTER satellite sensor derived layers were fused to detect alte…
Mineral exploration campaigns are financially risky. Several state-of-the-art methods have been developed to mitigate the risk, including predictive modelling of mineral prospectivity using principal component analysis (PCA) and geographic information systems (GIS). The PCA and GIS approach is currently considered acceptable for generating mineral exploration targets. However, some of its limit…
In this study, we present a machine learning-based method to predict trace element concentrations from major and minor element concentration data using a legacy lithogeochemical database of magmatic rocks from the Karoo large igneous province (Gondwana Supercontinent). Wedemonstrate that a variety of trace elements, including most of the lanthanides, chalcophile, lithophile, and siderophile ele…
Rapid detection of landslides after an exceptional event is critical for planning effective disaster management. Previous works have typically used machine learning-based methods, including the recently popular deep-learning approaches, to identify characteristics surface features from satellite remote sensing data, especially from optical images. However, data acquisition from optical images i…
Landform maps are important tools in assessment of soil- and eco-hydrogeomorphic processes and hazards, hydrological modeling, and natural resources and land management. Traditional techniques of mapping landforms based on field surveys or from aerial photographs can be time and labor intensive, highlighting the importance of remote sensing products based automatic or semi-automatic approaches.…
Digital geological mapping has experienced significant growth over the past three decades due to the advent of commercial geographical information systems, advances in global positioning systems, and the availability of portable hand-held devices, such as mobile personal computers (PCs), smartphones, and tablets. Numerous software packages have been developed to collect, combine, organise, visu…
Land subsidence is a worldwide threat that may cause irreversible damage to the environment and the infrastructures. Thus, identifying and mapping areas prone to land subsidence with accurate methods such as Land Subsidence Susceptibility Index (LSSI) mapping is crucial for mitigating the adverse impacts of this geohazard. Also, Machine Learning (ML) is now becoming a powerful tool to analyze v…
The emission of dust particles, mainly from arid and semi-arid lands, as a result of climate change and human activities, is known to be a global issue. Identifying dust emission sources is the first key step in dealing with the hazardous consequences of this rising phenomenon. This study is an attempt to address one of the major challenges in mapping dust emission sources. Accordingly, an inno…
Inland water bodies play a vital role at all scales in the terrestrial water balance and Earth’s climate variability. Thus, an inventory of inland waters is crucially important for hydrologic and ecological studies and management. Therefore, the main aim of this study was to develop a deep learning-based method for inventorying and mapping inland water bodies using the RGB band of high-resolu…
Previously glaciated landscapes often share similar surficial characteristics, including large areas of exposed bedrock, blankets of till deposits, and alluvium-floored valleys. These materials play significant roles in geologic and hydrologic resources, geohazards, and landscape evolution; however, the vast extents of many previously glaciated landscapes have rendered comprehensive, detailed f…