The Hindu Kush-Pamir region (HKPR) is characterized by complex ongoing deformation, unique slab geometry, and intermediate seismic activity. The availability of extensive seismological data in recent decades has prompted the use of deep learning algorithms to extract valuable insights. In this study, we present a fully automated approach for augmenting earthquake catalogue within the HKPR. Our …
Deep-learning (DL) algorithms are increasingly used for routine seismic data processing tasks, including seismic event detection and phase arrival picking. Despite many examples of the remarkable performance of existing (i.e., pre-trained) deep-learning detector/picker models, there are still some cases where the direct applications of such models do not generalize well. In such cases, substant…
Reliable seismic phase identification is often challenging especially in the circumstances of low-magnitude events or poor signal-to-noise ratio. With improved seismometers and better global coverage, a sharp increase in the volume of recorded seismic data has been achieved. This makes handling seismic data rather daunting by using traditional approaches and therefore fuels the need for more ro…
Machine learning is becoming increasingly important in scientific and technological progress, due to its ability to create models that describe complex data and generalize well. The wealth of publicly-available seismic data nowadays requires automated, fast, and reliable tools to carry out a multitude of tasks, such as the detection of small, local earthquakes in areas characterized by sparsity…