In this study, we present an artificial neural network (ANN)-based approach for travel-time tomography of a volcanic edifice under sparse-ray coverage. We employ ray tracing to simulate the propagation of seismic waves through the heterogeneous medium of a volcanic edifice, and an inverse modeling algorithm that uses an ANN to estimate the velocity structure from the “observed” travel-time …
Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains. Time-domain inversion has stronger stability and noise resistance compared to frequency-domain inversion. Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution. Therefore, the research on the joint inversion met…
Seismic inversion, such as velocity and impedance, is an ill-posed problem. To solve this problem, swarm intelligence (SI) algorithms have been increasingly applied as the global optimization approach, such as differential evolution (DE) and particle swarm optimization (PSO). Based on the well logs, the sparse probability distribution (PD) of the reflectivity distribution is spatial stationarit…
In this study, a deep learning algorithm was applied to two-dimensional magnetotelluric (MT) data inversion. Compared with the traditional linear iterative inversion methods, the MT inversion method based on convolutional neural networks (CNN) does not rely on the selection of the initial model parameters and does not fall into the local optima. Although the CNN inversion models can provide a c…
Among the biggest challenges we face in utilizing neural networks trained on waveform (i.e., seismic, electromagnetic, or ultrasound) data is its application to real data. The requirement for accurate labels often forces us to train our networks using synthetic data, where labels are readily available. However, synthetic data often fail to capture the reality of the field/real experiment, and w…
We propose to use a Few-Shot Learning (FSL) method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data. Recently, artificial neural network (ANN) demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability. Hence, ANN method could provide a high resolution inversio…
The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure. As an effective technique, Rayleigh wave exploration can accurately obtain information on the subsurface. In particular, Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure. This is a typical multiparameter, high-dimensio…
The Revell batholith is located within the Western Wabigoon terrane of the Superior Province, Northwestern Ontario, Canada, and is a potential site for a deep geological repository (DGR). This batholith is considered to have favourable geoscientific characteristics for hosting a DGR, including a sufficient volume of relatively homogenous rock. The subsurface geometry of the batholith plays an i…