PERPUSTAKAAN BIG

  • Beranda
  • Informasi
  • Berita
  • Bantuan
  • Area Pustakawan
  • Area Anggota
  • Pilih Bahasa :
    Bahasa Arab Bahasa Bengal Bahasa Brazil Portugis Bahasa Inggris Bahasa Spanyol Bahasa Jerman Bahasa Indonesia Bahasa Jepang Bahasa Melayu Bahasa Persia Bahasa Rusia Bahasa Thailand Bahasa Turki Bahasa Urdu

Ditapis dengan

  • Tahun Penerbitan
    To
    1 0042 1041 0042 1041 004 — 2 1041 0041 2791 5541 8292 104
  • Ketersediaan
  • Lampiran
  • Tipe Koleksi
    Lihat Lebih Banyak
  • Format Fisik Dokumen
    Lihat Lebih Banyak
  • Lokasi
  • Bahasa
Ditemukan 8 dari pencarian Anda melalui kata kunci: subject="Inversion"
cover
When linear inversion fails: Neural-network optimization for sparse-ray trave…
Komentar Bagikan
Johannes FaberGeorg RümpkerNishtha SrivastavaAbolfazl KomeaziFabian Limberger

In this study, we present an artificial neural network (ANN)-based approach for travel-time tomography of a volcanic edifice under sparse-ray coverage. We employ ray tracing to simulate the propagation of seismic waves through the heterogeneous medium of a volcanic edifice, and an inverse modeling algorithm that uses an ANN to estimate the velocity structure from the “observed” travel-time …

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
12 hlm PDF, 11.246 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
High-resolution seismic inversion method based on joint data-driven in the ti…
Komentar Bagikan
Yu LiuSisi Miao

Seismic inversion can be divided into time-domain inversion and frequency-domain inversion based on different transform domains. Time-domain inversion has stronger stability and noise resistance compared to frequency-domain inversion. Frequency domain inversion has stronger ability to identify small-scale bodies and higher inversion resolution. Therefore, the research on the joint inversion met…

Edisi
Vol.5, December 2024
ISBN/ISSN
2666-5441
Deskripsi Fisik
13 hlm PDF, 15.975 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Seismic swarm intelligence inversion with sparse probability distribution of …
Komentar Bagikan
Zhiguo WangJinghuai GaoBing ZhangZhaoqi Gao

Seismic inversion, such as velocity and impedance, is an ill-posed problem. To solve this problem, swarm intelligence (SI) algorithms have been increasingly applied as the global optimization approach, such as differential evolution (DE) and particle swarm optimization (PSO). Based on the well logs, the sparse probability distribution (PD) of the reflectivity distribution is spatial stationarit…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
8 hlm PDF, 5.630 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
2D magnetotelluric inversion based on ResNet
Komentar Bagikan
LiAn XieBo HanXiangyun HuNingbo Bai

In this study, a deep learning algorithm was applied to two-dimensional magnetotelluric (MT) data inversion. Compared with the traditional linear iterative inversion methods, the MT inversion method based on convolutional neural networks (CNN) does not rely on the selection of the initial model parameters and does not fall into the local optima. Although the CNN inversion models can provide a c…

Edisi
Vol.4, December 2023
ISBN/ISSN
2666-5441
Deskripsi Fisik
9 hlm PDF, 4.620 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
MLReal: Bridging the gap between training on synthetic data and real data app…
Komentar Bagikan
Tariq AlkhalifahHanchen WangOleg Ovcharenko

Among the biggest challenges we face in utilizing neural networks trained on waveform (i.e., seismic, electromagnetic, or ultrasound) data is its application to real data. The requirement for accurate labels often forces us to train our networks using synthetic data, where labels are readily available. However, synthetic data often fail to capture the reality of the field/real experiment, and w…

Edisi
Vol.3, December 2022
ISBN/ISSN
2666-5441
Deskripsi Fisik
14 hlm PDF, 3.698 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
High resolution pre-stack seismic inversion using few-shot learning
Komentar Bagikan
Guangmin HuYaojun WangTing ChenHanpeng CaiGang Yu

We propose to use a Few-Shot Learning (FSL) method for the pre-stack seismic inversion problem in obtaining a high resolution reservoir model from recorded seismic data. Recently, artificial neural network (ANN) demonstrates great advantages for seismic inversion because of its powerful feature extraction and parameter learning ability. Hence, ANN method could provide a high resolution inversio…

Edisi
Vol.3, December 2022
ISBN/ISSN
2666-5441
Deskripsi Fisik
6 hlm PDF, 5.168 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Near-surface velocity inversion from Rayleigh wave dispersion curves based on…
Komentar Bagikan
Yaojun WangHua WangXijun WuaKeyu ChenSheng LiuXiaodong Deng

The utilization of urban underground space in a smart city requires an accurate understanding of the underground structure. As an effective technique, Rayleigh wave exploration can accurately obtain information on the subsurface. In particular, Rayleigh wave dispersion curves can be used to determine the near-surface shear-wave velocity structure. This is a typical multiparameter, high-dimensio…

Edisi
Vol.2, December 2021
ISBN/ISSN
2666-5441
Deskripsi Fisik
12 hlm PDF, 2.687 KB
Judul Seri
Artificial Intelligence in Geosciences
No. Panggil
551
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
cover
Subsurface geometry of the Revell Batholith by constrained geophysical modell…
Komentar Bagikan
Martin MushayandebvuAaron DesRochesMartin BatesAndy ParmenterDerek Kouhi

The Revell batholith is located within the Western Wabigoon terrane of the Superior Province, Northwestern Ontario, Canada, and is a potential site for a deep geological repository (DGR). This batholith is considered to have favourable geoscientific characteristics for hosting a DGR, including a sufficient volume of relatively homogenous rock. The subsurface geometry of the batholith plays an i…

Edisi
Vol.19, September 2023
ISBN/ISSN
2590-1974
Deskripsi Fisik
14 hlm PDF, 13.525 KB
Judul Seri
Applied Computing and Geoscience - Open Access
No. Panggil
551.136
Ketersediaan1
Tambahkan ke dalam keranjang
Unduh MARCSitasi
PERPUSTAKAAN BIG
  • Informasi
  • Layanan
  • Pustakawan
  • Area Anggota

Tentang Kami

Perpustakaan Badan Informasi Geospasial adalah perpustakaan yang dikelola oleh Badan Informasi Geospasial. Perpustakaan ini memiliki koleksi yang berkaitan dengan informasi geospasial dan literatur terkait lainnya.

Statistik Pengunjung Web

Hari Ini : 1 Pekan Terakhir : 1 Bulan Terakhir : Total Kunjungan :

Cari

masukkan satu atau lebih kata kunci dari judul, pengarang, atau subjek

Donasi untuk SLiMS Kontribusi untuk SLiMS?

© 2025 — Senayan Developer Community

Ditenagai oleh SLiMS
Pilih subjek yang menarik bagi Anda
  • Batas Wilayah
  • Ekologi
  • Fotogrametri
  • Geografi
  • Geologi
  • GIS
  • Ilmu Tanah
  • Kartografi
  • Manajemen Bencana
  • Oceanografi
  • Penginderaan Jauh
  • Peta
Icons made by Freepik from www.flaticon.com
Pencarian Spesifik