The monitoring of different crops (cultivated plots) and types of surface (bare soils, etc.) is a crucial economic and environmental issue for the management of resources and human activity. In this context, the objective of this study is to evaluate the contribution of multispectral satellite imagery (optical and radar) to land use and land cover classification. Object-oriented supervised cla…
Strong convective systems and the associated heavy rainfall events can trig-ger floods and landslides with severe detrimental consequences. These events have a high spatio-temporal variability, being difficult to predict by standard meteorological numerical models. This work proposes the M5Images method for performing the very short-term prediction (nowcasting) of heavy convective rainfall usin…
Flood incidents can massively damage and disrupt a city economic or governing core. However, flood risk can be mitigated through event planning and city-wide preparation to reduce damage. For, governments, firms, and civilians to make such preparations, flood susceptibility predictions are required. To predict flood susceptibility nine environmental related factors have been identified. They ar…
The knowledge of type of precipitating cloud is crucial for radar based quantitative estimates of precipitation. We propose a novel model called CloudSense which uses machine learning to accurately identify the type of precipitating clouds over the complex terrain locations in the Western Ghats (WG) of India. CloudSense uses vertical reflectivity profiles collected during July–August 2018 fro…
This study addresses the challenge of oil spill detection using Synthetic Aperture Radar (SAR) satellite imagery, employing deep learning techniques to improve accuracy and efficiency. We investigated the effectiveness of various neural network architectures and encoders for this task, focusing on scenarios with limited training data. The research problem centered on enhancing feature extractio…
Satellite remote sensing plays an important role in mapping the location and extent of surface water. A variety of approaches are available for mapping surface water, but deep learning approaches are not commonplace as they are ‘data hungry’ and require large amounts of computational resources. However, with the availability of various satellite sensors and rapid development in cloud comput…